# History of Astronomy From The Roman Empire To The Present, part 15

## Einstein’s Theories Examined

As you know this whole model of the heliocentric universe is based on the “research” of certain people, such as Newton and Galileo – among others. In this group includes Albert Einstein. This video shows another side of Einstein that most people don’t know. There is a lot more that I have on Albert Einstein but I don’t want to diverge too much from the article below.

(It looks like the video was taken offline by YouTube, but as of yet, it has not; just click the “play icon” to view.)

Whatever it is that Relativity is supposed to establish is to be disproved backwards, beginning with the example which Einstein puts forward— where an observer standing at the centre of a rotating disk is watching some one else on the same disk measuring the circumference of a circle round the observer by repeated applications of a small measuring rod; and afterwards measuring the diameter of the circle in the same way.

He says that because the disk is in motion, the small measuring rod will appear to the observer (at the centre) to be contracted, so that the person who is measuring (whom I will call “B” ) will have to apply the rod more often to go round that circle than he would if the disk was at rest. That is not true ! . . . If B actually lays the rod (or foot rule) down upon the disk correctly, the number of applications to go round the circle will be the same whether the disk is moving or not, and the observer at the centre will see that it is so, if he is not made too dizzy to count. On the other hand, if B does not lay the rod down and measure the circle as one would expect, but only walks around the disk with the rod in the air (as in diagram 27) then the rotation of the disk will disturb him, so that he has to make an effort to preserve his balance; with the result that he can not place the rod as accurately as he would if the disk were not in motion; and in that case it may take either more or less applications of the rule to go completely round than it would if the disk were still; and that difference would be seen by the observer at the centre— not as an optical illusion! (as Einstein implies) but in reality; a result that is entirely physical, and due to physical causes. When walking across the disk and measuring the diameter, B is not disturbed to anything like the same degree as in walking round the circumference, and so he measures the diameter more accurately. Most of us have at some time or other witnessed the antics of a clown trying to run or walk upon a spinning disk in a circus, and this enables us to understand how such a motion would affect our friends performing on Einstein’s revolving table.

His example is merely amusing, it serves no useful purpose, and proves nothing; unless, indeed, it proves by analogy that the inhabitants on a spinning earth would be rendered as incapable of acting and judging things correctly as his examples.

What we have always known as a “point” in the terms of Euclid, Einstein calls an “event!” but if words have any meaning a point and an event are two totally different things; for a point is a mark, a spot or place, and is only concerned in the consideration of material things; while an event is an occurrence, it is something that happens. . . . There is as much difference between them as there is between the sentence “This is a barrel of apples,” and “These apples came from New Zealand.”

While claiming “ time ” as a fourth dimension, Einstein explains that ” by dimension we must understand merely one of four independent quantities which locate an event in space.” . . . This is to imply that the other three dimensions which are in common use are independent quantities, which is not the case; for length, breadth and thickness are essentially found in combination; they co-exist in each and every physical thing, so that they are related— hence they are not independent quantities. On the contrary, time IS an independent quantity. It is independent of any one, or all, the three proportions of material things, it is not in any way related; and therefore cannot be used as a fourth dimension.

We know that an event is an occurrence; and we find that what Einstein really means by his fourth dimension is “merely the time by which we locate something that happened in space;” and that is just what time has always meant— the period between one event and another. . . Length, breadth and thickness, are proportions of each and every finite thing; while time is infinite. The dimensions are finite; while time is abstract.

Strangely enough, while Einstein claims that everything is in motion and nothing is stable, he allows one thing, and one thing only, to remain outside the realm of relativity, independent of everything else; and that is what he calls his Second Law, the Einstein “Law of the Constancy of the Velocity of Light.” He claims that the velocity of light is constant under all circumstances, and therefore is absolute.

This is a blunder of the first magnitude, but I do not imagine that he fell into it through any oversight; for it is quite evident that he was driven into this false position. He was compelled to say that the velocity of light is constant, because, if he did not his new geometry would be useless; for after all his geometry amounts to this:

He begins by assuming that light is a material thing, so that it is affected by the gravitational attraction of any celestial bodies it has to pass on its way to earth, which causes it to deviate from its appointed course so that it comes to us with more or less curve, according to its distance, and according to the bodies it encounters in its passage. But it always travels at the same velocity, and so, if we can estimate — for example— how much the light of Canopus is made to curve by the gravitation of other bodies between it and the earth (which would be done by Kepler’s and Newton’s laws), we can calculate how much longer its journey is made by those windings, twists, and turns. Then we can time its arrival, because— although it has to travel so much further than its distance would be in a straight line— it always travels at the same 671,090,400 miles an hour; or 186,414 miles every second. It is true that Einstein uses a number of signs and symbols which are supposed to simplify the process; though it is probable that they do no more than merely make it more mysterious, but the plain English of it is as I have shown; and so we perceive that Einstein uses time pretty much in the same way as we do, and not as a dimension at all.

Thus we have discovered that the things which he re-christened an Event, a Fourth Dimension, and a New Geometry, are false to the titles he has given them; the words as he uses them are misnomers, therefore we dismiss them ; for they are no longer of any use or interest to us.